ACKNOWLEDGEMENTS

The California Energy Commission financially supported this project. This work was conducted at the Lawrence Berkeley National Laboratory, which is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Energy Efficiency Department, Advanced Manufacturing Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

The authors would like to acknowledge the contributions of the Lawrence Berkeley National Laboratory Combustion Laboratory staff who contributed to this project: Dr. Vi Rapp, Gary Hubbard, Toshifumi Hotchi, Alex Frank and Feng Liu.

Lawrence Berkeley National Laboratory Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.
PREFACE

The California Energy Commission Energy Research and Development Division supports public interest energy research and development that will help improve the quality of life in California by bringing environmentally safe, affordable, and reliable energy services and products to the marketplace.

The Energy Research and Development Division conducts public interest research, development, and demonstration (RD&D) projects to benefit California.

The Energy Research and Development Division strives to conduct the most promising public interest energy research by partnering with RD&D entities, including individuals, businesses, utilities, and public or private research institutions.

Energy Research and Development Division funding efforts are focused on the following RD&D program areas:

- Buildings End-Use Energy Efficiency
- Energy Innovations Small Grants
- Energy-Related Environmental Research
- Energy Systems Integration
- Environmentally Preferred Advanced Generation
- Industrial/Agricultural/Water End-Use Energy Efficiency
- Renewable Energy Technologies
- Transportation

Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances is the final report for the research and development of natural draft ultra-low emissions burners for gas appliances project contract number PIR-14-002 conducted by Lawrence Berkeley National Laboratory. The information from this project contributes to Energy Research and Development Division’s Buildings End-Use Energy Efficiency Program.

When the source of a table, figure, or photo is not otherwise credited, it is the work of the author of the report.

For more information about the Energy Research and Development Division, please visit the Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy Commission at 916-327-1551.
Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. An advanced low emission combustion system for cooking appliances can reduce air quality impacts from these devices.

This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

Keywords: NOx, natural gas, burner, appliance

Please use the following citation for this report:

TABLE OF CONTENTS

Acknowledgements ... i

PREFACE .. ii

ABSTRACT ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

EXECUTIVE SUMMARY .. 1

- Introduction ... 1
- Project Purpose ... 1
- Project Results .. 1
- Project Benefits ... 1

CHAPTER 1: Introduction .. 3

CHAPTER 2: Forced Draft Prototype: Multi-Port Ring-Stabilizer Burner .. 4

- 2.1 Introduction ... 4
- 2.2 Survey of Existing Technology ... 4
- 2.3 Ring-Stabilizer Geometry .. 5
 - 2.3.1 Definition of Terms and Dimensions ... 5
 - 2.3.2 Scaling the Ring-Stabilizer Port ... 6
- 2.4 Experimental Methodology .. 7
 - 2.4.1 Test Stand .. 7
 - 2.4.2 Test Protocol ... 10
- 2.5 Results and Discussion ... 11
 - 2.5.1 Lean Blowoff .. 11
 - 2.5.2 Flashback .. 12
 - 2.5.3 Emissions .. 13
 - 2.5.4 Turndown ... 14
 - 2.5.5 Flame Stability .. 15
 - 2.5.6 Crossover Ignition .. 15
LIST OF FIGURES

Figure 1: Traditional Residential Gas Range Burner Head ... 5
Figure 2: Traditional Commercial Gas Range Burner Head ... 5
Figure 3: Definitions of Ring-Stabilizer Parameters ... 6
Figure 4: Forced Draft Ring-Stabilizer Plates ... 6
Figure 5: Ring-Stabilizer Burner Controller Program Interface .. 8
Figure 6: Forced Draft Ring-Stabilizer Experimental Setup ... 8
Figure 7: Forced Draft Ring-Stabilizer Air Pre-Mixing Manifold .. 9
Figure 8: Horiba PG-250 ... 9
Figure 9: Crossover Ignition Study .. 11
Figure 10: Effect of Port Diameter (Dp) on Lean Blowoff .. 12
Figure 11: Effect of Port Diameter (Dp) on Emissions ... 14
Figure 12: (L) Stable Flames, (R) Unstable Flames .. 15
Figure 13: Picture of Fisher Burner .. 17
Figure 14: Natural Draft Ring-Stabilizer Experimental Setup ... 18
Figure 15: Forced Draft Ring-Stabilizer Fuel Venturi Assembly ... 19
Figure 16: NOx and CO Emissions from Natural Draft Ring-Stabilizer Burner 21
Figure 17: High Heat Output of Laser Melts Thin Features .. 23
Figure 18: Alternative Design to Minimize Gap Leakage ... 24
Figure 19: Photograph of Multiple Ring-Stabilier Burner Cluster in Operation 24
Figure 20: Right Picture Shows Final Port Ignition Failure Due to Large Port Gap Distance 25
Figure 21: Crossover Failure With Ignition “Bridge” Concept .. 26
Figure 22: Light-Off Successful Regardless of Clustering Pattern or Df1 ... 27
Figure 23: NOx Emissions From Natural-Draft Ring-Stabilizer Burner ... 29

LIST OF TABLES

Table 1: Effect of Port Diameter (Dp) on Flashback ... 13
Table 2: Turndown Ratio for Test Burner Plates ... 15
Table 3: Maximum Allowable Distance Between Ports for Light Off ... 16
Table 4: Turndown Ratio for Test Burner Plates ... 22
Table 5: Maximum Allowable Distance Between Ports for Light Off 26
Table 6: Power Output and Footprint for One Ring-Stabilizer Port 28
EXECUTIVE SUMMARY

Introduction
In 2012, residences and commercial businesses consumed more than 50 percent of end-use natural gas consumption in California. This large group of consumer products still uses some of the oldest combustion technologies that emit a significantly larger amount of nitrous oxide (NOx) than their larger commercial and industrial counterparts do. An advanced, simple and low-cost combustion technology for these appliances will have a substantial impact on emissions reduction and performance improvement.

Project Purpose
This project adapted a simple, cost-effective, and passive low NOx control technology developed by LBNL for NASA’s microgravity combustion program, a Ring-Stabilizer Burner (an apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission), to residential cooking applications. A new type of simple ultra-low NOx natural draft gas burners, without electric fans, was developed and can be readily scaled and adapted to reduce NOx emissions from commercial and residential cooking devices such as cooktops and ovens. This low emission burner technology can also be adapted to hot water heaters (storage, tankless, heat pump, and pool heaters); furnaces, space heaters, and small boilers.

Project Results
This project successfully showed significant NOx emission reductions for residential and commercial cooking appliances. Adapting the forced-draft to natural-draft Ring-Stabilizer Burner was able to reduce NOx emissions by 80 percent compared to conventional technology. The lowest measured operational NOx levels are below 20 parts per million (ppm) at 3 percent oxygen, meeting one of the goals of this project. Carbon dioxide emissions are acceptable only at the lowest operational equivalence ratios.

Project Benefits
This technology demonstrates the potential to achieve major NOx emissions reductions while maintaining compliance with emission limitations adopted by the South Coast Air Quality Management District (SCAQMD) for other air pollutants (e.g., carbon monoxide). Experiments have shown the multi-port Ring-Stabilizer Burner reduces NOx emissions to levels significantly below current AQMD standards, moving cooking appliances towards meeting the long-term goal of an 80 percent reduction in emissions. Additionally, the new burner will maintain energy efficiency for most applications and increase energy efficiency for combustion devices that fire into the open air, such as gas burners for cooking and baking.
CHAPTER 1:
Introduction

In 2012, residences and commercial businesses consumed more than 50% of end-use natural gas consumption in California\(^1\) to heat homes and offices, wash and dry clothes, and cook and prepare food. However, this large group of consumer products still uses some of the oldest combustion technologies that emit a significantly larger concentration of NO\(_x\) than their larger commercial and industrial counterparts do. An advanced, simple and low-cost combustion technology for these appliances is necessary to have a large impact on emissions reduction and performance improvement.

Historic testing conducted at Lawrence Berkeley National Laboratory (LBNL) for NASA’s microgravity combustion program proved the ring-stabilizer technology is viable for low emissions operation. This technology was first adapted to a residential gas appliance by Professor Larry Kostiuk of the University of Alberta, Canada. A ring-stabilizer (1-inch port diameter) integrated a set of single port burners for a residential fan-assisted induced-draft furnace. The Ring-Stabilizer Burners reduced the furnace emissions to below 15 ppm NO\(_x\) @ 3% O\(_2\) without affecting efficiency (Johnson & Kostiuk\(^2\)). Further parametric studies of Johnson et al\(^3\) report NO\(_x\) emissions as low as 2.1 ppm @ 3% O\(_2\), values that are significantly lower than today’s air quality regulations.

The following chapters describe the experimental methodology for adapting the ring-stabilizer technology for operation without a fan so that it is a natural-draft system. This will enable its integration into residential and commercial cooking appliances without added cost of electrical components. This report also details efforts to characterize emissions. This low emission burner technology can also be adapted to hot water heaters (storage, tankless, heat pump, and pool heaters); furnaces, space heaters, and small boilers.

\(^1\) “Supply and Demand of Natural Gas in California”, http://energyalmanac.ca.gov/naturalgas/overview.html

CHAPTER 2:
Forced Draft Prototype: Multi-Port Ring-Stabilizer Burner

2.1 Introduction

Researchers conducted initial experiments using forced draft air to determine the optimal size and ring-stabilizer configuration for gas fueled cooking appliances. Electronic flow controllers supply both fuel and air to the burner in a forced draft configuration. Natural-draft burners are not used for initial experiments, as there is no practical way to measure the airflow through the burner that would be entrained by the relatively low fuel supply pressure (8” water column or 0.3 psi). The ability to measure airflow is necessary to obtain the deliverable of accurate measurement of the fuel/air ratio so that the data can be compared directly with those by Johnson et al.

This report outlines the design process for scaling the ring-stabilizer port, as well as the experimental methodology for characterizing the following performance and design variables:

- Lean blowoff,
- Flashback,
- Emissions,
- Turndown,
- Crossover ignition, and
- Design selection.

2.2 Survey of Existing Technology

A vendor survey was conducted to establish the typical thermal outputs range for residential and commercial cookstoves. The results of this survey guided sizing of the first iteration of Ring-Stabilizer Burners.

Typical thermal output ranges from 5,000 to 17,000 Btu/hr per burner for residential stovetops (Figure 1) and 28,000 to 33,000 Btu/hr per burner for commercial stovetops (Figure 2). Typical flame port diameter for conventional burners is around 0.1 inch (2.54 mm). The Ring-Stabilizer Burner used in Johnson & Kostiuk had a port diameter of 1 inch and a power output of 40,000 Btu/hr.

For the range of typical thermal outputs, it was necessary to decrease the ring-stabilizer port diameter for this study. However, due to manufacturing limitations and the volume of reactants flowing through the ring-stabilizer to maintain lean operation, the port diameters for the ring-stabilizers must be larger than the conventional flame port of 0.1 inch. The larger port diameter may necessitate a redesign of the traditional burner head in a commercialized product. The port
sizes are based on power requirements, manufacturing limitations, and the prevention of flashback and lean blowoff.

Figure 1: Traditional Residential Gas Range Burner Head

![Figure 1](http://www.cheapapplianceparts.com/upload/item/gas-burner-head-w-spark-electrode-black.jpg)

Figure 2: Traditional Commercial Gas Range Burner Head

![Figure 2](http://www.tmrep.com/images/030686.jpg)

2.3 Ring-Stabilizer Geometry

2.3.1 Definition of Terms and Dimensions
The Ring-Stabilizer Burner consists of a port with an internal ring, separated from the burner rim using small tabs. Figure 3 shows the schematic of the ring-stabilizer for a single port burner, with parameter definitions that follow the equation:

\[D_r = \delta_r + \delta \delta \]
The burners were configured in various patterns on plates machined from 0.060” thick low carbon steel.

The different configurations enable the testing of port-to-port interactions and the effect of varying port diameter (Figure 4). Additional information regarding final geometry is provided in section 4.2 Design Methodology.

2.3.2 Scaling the Ring-Stabilizer Port

A water-jet cutting tool fabricated plates with different ring-stabilizer configurations. Water-jet cutting is ideal for cost-effectively producing multiple two-dimensional parts out of metal as water-jets are accessible, affordable and provide quick turnaround for multiple variations of a part. However, due to limitations of the water-jet the minimum gap width (δ_g) is 0.060 inches. The ring width (δ_r) is 0.035 inches and the port diameter (D_p) is varied.

A primary design consideration is minimizing flashback potential. Flashback may occur when the reactant bulk flow burner exit velocity is reduced below the laminar flame speed for a given fuel/air mixture. To prevent flashback, the maximum port diameter and number of ports per plate for a given power (based upon fuel flow rate) and equivalence ratio was determined. The
effective area of the ports, combined with the power and equivalence ratio, dictates the flow velocity through each port.

Ports were sized to not incur flashback, representing thermal outputs based on the residential and commercial thermal output survey, and cover the range of equivalence ratios used in Johnson & Kostiuk\(^1\) to obtain low NO\(_x\) emissions. The maximum diameter of each port and the number of ports per plate was determined to prevent flashback. To keep a reasonable ratio of gap width to inner ring diameter, and due to the minimum gap width of 0.060 inches, a minimum port diameter of 0.375 inches was also established.

Researchers elected to use a linear port configuration instead of a seven port hexagonal cluster to study crossover ignition and port-to-port interactions. The edge distance between ports along the plate was incrementally increased.

A 3-D Computer Aided Design (CAD) program machined the parts from a CAD file created using equation driven dimensions to allow rapid scaling and quick turnaround for the different plate configurations. As a result, future iterations of the plate will be created faster.

2.4 Experimental Methodology

2.4.1 Test Stand

A test stand was developed for the forced draft prototype experiments. The test stand consists of:

1. Plumbing for methane mass flow controller (experimental substitute for natural gas) and forced draft air mass flow controller,
2. Custom computer control program allowing for finite control of both fuel and air while logging of data (flow rates and emissions),
3. Burner apparatus with burner plate mounting including: support frame, burner expansion section (throat), turbulence plate, flame arrestor (prevent damage in event of flashback), packed bed of marbles to smooth flow,
4. Fuel and Air pre-mixing manifold, and
5. Horiba PG-250 5 channel emissions analyzer with quartz enclosure and gas emissions cooling system.
Figure 5: Ring-Stabilizer Burner Controller Program Interface

Figure 6: Forced Draft Ring-Stabilizer Experimental Setup
Existing mass flow controllers were calibrated and certified before using. A new Methane mass flow controller tested the relatively low flow rates and a custom computer control and data collection program was developed to change the flow of reactants based on desired power and equivalence ratio. The computer program and mass flow controllers also double as a data collection system, allowing the user to track fuel flow, airflow, power output, equivalence ratio and emissions.
2.4.2 Test Protocol

2.4.2.1 Lean Blowoff and Flashback
Lean blowoff describes the physical lifting of a flame above its burner so that the flame is no longer attached to the burner resulting in the flame extinguishing. Lean blowoff occurs at high flow velocity or lean fuel conditions. To test for lean blow off, the burner thermal power output is initially set, based on the range of typical power outputs for conventional gas cookstoves, determined from the vendor survey. The equivalence ratio (and hence power output, much like commercial cooking appliances) is reduced incrementally until the flame no longer attaches to the port. The limiting equivalence ratio and power are recorded. The flow velocity is calculated, based on the power, equivalence ratio and Ring-Stabilizer Burner geometry. This process is repeated for various thermal power outputs to generate a curve for a plot of bulk exit velocity versus equivalence ratio. A curve is generated for each burner plate design. Qualitative notes and pictures are also taken, describing the transition from stable flame to blowoff.

Flashback describes the physical condition in which the flame propagates upstream of its burner, causing undesired combustion that may result in damage or destruction of the burner or other hardware. Flashback occurs at low flow velocity and rich fuel conditions. To test for flashback, an equivalence ratio is set at a known stable level. The power, and therefore flow velocity, is incrementally decreased until the flame flashes back into the burner throat. The limiting equivalence ratio and power are recorded. The flow velocity is calculated, based on the power, equivalence ratio and Ring-Stabilizer Burner geometry. This process is repeated for various thermal power outputs in order to generate a curve for a plot of flow velocity versus equivalence ratio. A curve is then generated for each burner plate design.

2.4.2.2 Emissions
Emissions data are collected using a 5-channel Horiba PG-250 emissions analyzer. A quartz enclosure is placed over the burner port in order to prevent room air mixing and diluting the combustion exhaust stream. The procedure is very similar to that used to test for lean blowoff and flashback. The burner thermal output power is set and equivalence ratio is increased incrementally from the lean blowoff limit. NOx and CO emissions are recorded at each equivalence ratio set point in order to generate a curve for the selected power. This process is repeated for a range of the typical thermal output powers from the vendor survey. The equivalence ratios are selected based on the fuel lean operating conditions. The results are presented in a plot.

2.4.2.3 Turndown
Turndown can be defined in a variety of ways. One common definition of turndown is the ratio of maximum to minimum energy output a burner can produce, irrespective of other factors such as equivalence ratio. Another definition of turndown ratio takes into account equivalence ratio and is the range of power output for the burner at a given equivalence ratio. This latter definition is used as maintaining a constant equivalence ratio is critical to ensuring low NOx emissions. For the Ring-Stabilizer Burner, the power output is proportional to the reactant bulk flow burner exit velocity at a fixed equivalence ratio. For a fixed equivalence ratio, the exit velocity, and therefore power, is incrementally increased until lean blowoff occurs. The velocity
is then decreased until flashback occurs. The maximum and minimum velocity defines the turndown ratio. This procedure is repeated for various equivalence ratios.

2.4.2.4 Crossover Ignition
The ring-stabilizer ports are configured in two linear patterns that cross in the middle of the plate. The edge distance between ports is varied from 0.06 inches to 0.25 inches for both plates. To test, an equivalence ratio and power are set, ideally based on settings resulting in ideal parameters from the results of the emissions tests. One port along the edge of the plate is ignited with a hand held torch. The port nearest the torch is ignited and lights off neighboring ports so long as the edge distance between ports is sufficiently small. When the flame no longer propagates to the neighboring ports, the maximum edge distance allowable for ignition is recorded. The procedure is repeated for various equivalence ratios, burner power output, and two different port diameters.

![Crossover Ignition Study](image)

Right picture shows final port not lit due to large port gap distance.

2.5 Results and Discussion

2.5.1 Lean Blowoff
Lean blowoff testing results of the Ring-Stabilizer Burner are compared to historic data in Figure 10. These data show that scaled down versions of the Ring-Stabilizer Burner have a consistent lean blowoff relationship that is independent of port diameter or number. As the bulk exit, velocity from the burner is reduced the equivalence ratio at which lean blowoff occurs decreases. This result is beneficial for the potential to adapt the Ring-Stabilizer Burner from forced to natural draft operation, as bulk exit velocities of natural draft systems are similar to the lower end of the tested forced draft system.
Additionally, a large difference between the lean blowoff limits for the tested scaled down multi-port based ring-stabilizers and the 1-inch single port is seen. This indicates a large potential for further decreases in stable operation with reduced equivalence ratio. Operating with a reduced equivalence ratio will dramatically reduce NOx emissions as equivalence ratio and NOx are directly linked through thermal output.

2.5.2 Flashback
Flashback propensity increases as either bulk exit velocity decreases or equivalence ratio increases with these results consistent with academic literature (Table 1). The results are promising for natural draft operation. When in natural draft mode, the lower ranges of bulk exit velocities (0.3 to 0.5 m/s) are potentially possible but we will be operating with significantly
lower equivalence ratios than result in flashback. This indicates that while flashback potential should be considered in natural draft operation, it is not anticipated to be a limiting factor.

Table 1: Effect of Port Diameter (D_p) on Flashback

<table>
<thead>
<tr>
<th>Equivalence Ratio</th>
<th>U (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375” 9 Ports</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>0.85</td>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4375” 9 Ports</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>0.85</td>
<td>0.4</td>
</tr>
<tr>
<td>0.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2.5.3 Emissions

Figure 11 shows NOx and CO emissions, corrected so that values are representative of 3% O2 in the exhaust stream, for two forced-draft ring-stabilized burners operating across a range of equivalence ratios.
Additionally, comparative results taken from a forced draft, high flow rate, ultra low emissions low swirl burners are plotted. These results show that the forced-draft reduced scale Ring-Stabilizer Burners are capable of producing lower NOx emissions than are currently emitted by typical residential cooktops across a wide range of equivalence ratios. The lowest operational equivalence ratios are more than 80% less than the typical cooktop burner, meeting one of the goals of this project. CO emissions are acceptable, below 100ppm, only at the lowest operational equivalence ratios. As shown in the lean blowoff results, the small-scale ring-stabilized burner has the potential to operate with even lower equivalence ratios than those in Figure 11, furthering the possibility of lower CO emissions.

2.5.4 Turndown
The reduced scale burners are capable of between 3:1 and nearly 5:1 turndown. Commercial cooktops are capable of much higher turndown rates. Researchers believe additional engineering may expand the turndown range.
Table 2: Turndown Ratio for Test Burner Plates

<table>
<thead>
<tr>
<th>Equivalence Ratio</th>
<th>Turndown Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>3:1</td>
</tr>
<tr>
<td>0.85</td>
<td>3.4:1</td>
</tr>
<tr>
<td>0.9</td>
<td>4:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalence Ratio</th>
<th>Turndown Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>4.7:1</td>
</tr>
<tr>
<td>0.85</td>
<td>4.8:1</td>
</tr>
<tr>
<td>0.9</td>
<td>4.6:1</td>
</tr>
</tbody>
</table>

2.5.5 Flame Stability

The reduced scale ring-stabilized burners are capable of producing very stable flames as seen in Figure 12. These stable flames are found widely across the operational range of the burner. However, in some ultra low equivalence ratio cases, the outermost ports are unstable (Figure 12). This issue may be resolved through hexagonal placement of ports rather than linear arrangement. A hexagonal arrangement will allow for nearly ports to maintain combustion through crossover ignition.

Figure 12: (L) Stable Flames, (R) Unstable Flames

2.5.6 Crossover Ignition

Crossover ignition will be required for multi-port ignition. Results in Table 3 show that ports will need to be less than 0.125 inches apart, an easy geometry to implement that showed no potential for damage to the plate.
Table 3: Maximum Allowable Distance Between Ports for Light Off

<table>
<thead>
<tr>
<th>0.375” 9 Ports</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence Ratio</td>
<td>Max. Edge Distance (in)</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.4375” 9 Ports</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence Ratio</td>
<td>Max. Edge Distance (in)</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.125</td>
<td></td>
</tr>
</tbody>
</table>

2.5.7 Design Selection

The preliminary tests show it is necessary to manufacture ports with smaller gap width due to fluid/air leakage from the 0.060 inches minimum gap possible with the water-jet. Reducing the size of the gap and overall port diameter will help address this issue.
CHAPTER 3: Natural Draft Prototype: Multi-Port Ring-Stabilizer Burner with Venturi

3.1 Introduction
Experiments conducted adapted a fuel venturi assembly to the multi-port Ring-Stabilizer Burner designs so the system operates in a natural draft configuration. The venturi induces fuel lean reactants without the need for forced air. This chapter outlines the design process for adapting the multi-port Ring-Stabilizer Burner to natural draft as well as the experimental methodology for characterizing the following characteristics:

- Emissions
- Turndown

3.2 Commercially Available Technology
A commercially available fuel venturi assembly was selected based on its thermal output and physical geometry. The venturi burner provides up to 10,000 Btu/hr with a fuel orifice diameter of 0.050”. A fuel control valve varies the thermal output. Calculations determined the thermal output of a burner based on orifice diameter and supply line pressure.

A review of gas burner and venturi design literature suggests that the fuel orifice should be located upstream of the venturi throat at a distance of at least two times the throat diameter. The outlet of the venturi should be located downstream of the throat at a distance of at least 6 times the throat diameter. The selected venturi assembly meets the specified design criteria.

The venturi assembly also has adjustable air shutters, enabling us to test the effect of air gap size on air entrainment. However, as the purpose of the premixing venturi is to maximize air entrainment to the burner the air shutters were fully open for all testing. An expansion section was added to mount the multi-port Ring-Stabilizer Burner plates (Figures 13 —15).

Figure 13: Picture of Fisher Burner

Photo credit: http://store.clarksonlab.com/images/products/detail/H5500.jpg
3.3 Experimental Methodology

3.3.1 Test Stand
A test stand was developed for the natural draft prototype experiments. The test stand consists of the following:

1. Plumbing for natural gas mass flow meters and pressure gauges to measure thermal power output and pressure upstream of the burner

2. Fuel venturi assembly with multi-port Ring-Stabilizer Burner plate mounting including: burner expansion section, turbulence plate, flame arrestor (prevent damage in event of flashback)

3. Horiba PG-250 5 channel emissions analyzer with quartz enclosure and gas emissions cooling system

Figure 14: Natural Draft Ring-Stabilizer Experimental Setup
3.3.2 Test Protocol

3.3.2.1 Emissions
Emissions data are collected using a five-channel Horiba PG-250 emissions analyzer. A quartz enclosure is placed over the burner port to prevent room air mixing and diluting the combustion exhaust stream. The procedure is similar to that used in the previous chapter and measurements taken for commercial state-of-the-art burners. The burner thermal output power is adjusted using the venturi fuel valve. Care is taken to record upstream fuel pressure while testing is conducted as this will be a factor in commercialization. NOx and CO emissions are recorded at each set point to generate a curve for various power levels. This process is repeated for a range of the typical thermal output powers from the vendor survey in the previous chapter. The results are presented in a plot.

3.3.2.2 Turndown
The effect of turndown on air entrainment was tested for the natural draft configuration to determine whether or not a consistent lean stoichiometry can be maintained over a range of fuel flow rates. The testing procedure is the same as with emissions data but flame stability is determined by lean blow off level. Corresponding emissions data are analyzed to determine equivalence ratio ranges for the viable flames.

3.4 Results and Discussion

3.4.1 Emissions
Figure 16 shows corrected NOx and CO emissions for two natural-draft ring-stabilized burners operating across a range of thermal output levels. Additionally, comparative results taken from
the forced draft version of the Ring-Stabilizer Burner show the natural-draft reduced scale Ring-Stabilizer Burners are capable of producing low levels of NOx and CO emissions over a range of equivalence ratios similar to their natural draft counterparts. The burners with 13 ports were able to operate with lower emissions than those with five ports, possibly due to lower pressure drop increasing air entrainment. This suggests as burner heads are made with larger surface areas to accommodate realistic cooking spaces, emissions will further be reduced.

NOx emissions are far below the 90-ppm level of incumbent technologies. The lowest operational NOx levels are 80% less than the typical cooktop burners, meeting one of the goals of this project. CO emissions are acceptable only at the lowest operational equivalence ratios. This result is expected as CO formation can be minimized when a stable flame is provided low carbon content (low equivalence ratio) and is able to completely combustion the fuel.
3.4.2 Lean Blowout

Lean blowout occurs for all burners between 2.6 and 2.9 KBTU/hr. The burners were designed to operate with a nominal 5 KBTU/hr operation. This would indicate a natural turndown ratio of roughly 2:1. All of the burners can operate with higher levels of heat rate but with poorer
emission profiles. Investigation into a venturi that provides a higher rate of turndown is necessary. A more effective venturi will allow for greater amounts of fuel variation with lower variability in associated airflow.

Table 4: Turndown Ratio for Test Burner Plates

<table>
<thead>
<tr>
<th>Burner</th>
<th>Heat Output Rate (KBTU/hr) at Lean Blowout</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBH3125_13P_v1</td>
<td>2.9</td>
</tr>
<tr>
<td>RBH375_13P_v1</td>
<td>2.8</td>
</tr>
<tr>
<td>RB_2 (5 Port)</td>
<td>2.6</td>
</tr>
<tr>
<td>RB_3 (5 Port)</td>
<td>2.8</td>
</tr>
<tr>
<td>RBH4375_13P_v1 (5 Port)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

3.4.3 Discussion
The Ring-Stabilizer Burner is capable of operating with natural draft operation at target NOx emission levels. Using a stock fuel/air mixing venturi provides evidence that a low cost commercial burner system could be developed. However, the natural draft venturi delivers air at a nonlinear relationship to fuel flow. This nonlinearity poses difficulties for the natural draft Ring-Stabilizer Burner to operate with high degree of turndown while maintaining low emissions. A more detailed examination of the fuel/air venturi is required to maximize heat rate turndown while ensuring low emissions.
CHAPTER 4:
Multi-Port Ring-Stabilizer Burner: Optimization of Clustering Pattern for Larger Thermal Outputs

4.1 Introduction
Clustering pattern of the multi-port Ring-Stabilizer Burner optimizes heat transfer from the burner to an intended heating surface. Knowledge of the port-to-port interactions is required for scaling and adapting the Ring-Stabilizer Burner to larger thermal outputs and other gas appliances, such as water heaters and small boilers. This chapter outlines the design and experimental process for optimizing the port-clustering pattern in order to develop a scaling strategy for the Ring-Stabilizer Burner.

4.2 Design Methodology
Multiple burner plates were designed to balance the effect of thermal power output, equivalence ratio, plate geometry and fuel type on flashback and lean blowoff. Scaling the traditional Ring-Stabilizer Burner to thermal outputs typical for residential cookstoves presented a manufacturing challenge. The minimum feature width of the waterjet led to gaps that were too large relative to the port diameter, creating a leakage.

Laser-cutting was explored as an alternative manufacturing option and anticipated it would be capable of producing a smaller minimum feature than the waterjet, reducing the gap width between the ring-stabilizer and the outer wall of the port. However, the heat of the laser proved too much for the thin web features, burning through the stabilizing ring and supporting tabs.

Figure 17: High Heat Output of Laser Melts Thin Features

Instead, an alternative design minimized leakage, while enabling continued use of the waterjet.
4.3 Experimental Methodology

4.3.1 Crossover Ignition
A crossover ignition study was performed as part of forced-draft testing. For the study, the ring-stabilizer ports are configured in two linear patterns that cross in the middle of the plate. The edge distance between ports is varied from 0.06 inches to 0.25 inches for both plates. To test, an equivalence ratio and power are set, based on settings resulting in ideal parameters from the results of the emissions tests. One port along the edge of the plate is ignited with a hand held torch. The port nearest the torch is ignited and lights off neighboring ports so long as the edge
distance between ports is sufficiently small. When the flame no longer propagates to the neighboring ports, the maximum edge distance allowable for ignition is recorded. The procedure is repeated for various equivalence ratios, burner power output, and two different port diameters. The maximum allowable edge distance for ignition was investigated and recorded.

Figure 20: Right Picture Shows Final Port Ignition Failure Due to Large Port Gap Distance

4.3.2 Turndown
Different port configurations and inner hole diameters, D_{hv}, were investigated with the new port geometry defined above in Figure 18. Each clustering pattern was tested to ensure crossover ignition and to determine the effect of the pattern on turndown.

4.4 Results and Discussion

4.4.1 Crossover Ignition
Crossover ignition will be required for multi-port ignition with tests performed as part of forced-draft studies. Results show that ports must be less than 0.125 inches apart, an easy geometry to implement that showed no potential for damage to the plate (Table 5).
Table 5: Maximum Allowable Distance Between Ports for Light Off

<table>
<thead>
<tr>
<th>Equivalence Ratio</th>
<th>Max. Edge Distance (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.125</td>
</tr>
<tr>
<td>0.85</td>
<td>0.125</td>
</tr>
<tr>
<td>0.9</td>
<td>0.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalence Ratio</th>
<th>Max. Edge Distance (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.125</td>
</tr>
<tr>
<td>0.85</td>
<td>0.125</td>
</tr>
<tr>
<td>0.9</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Six new burner plates were tested for crossover ignition. Three of the burner plates testing an ignition “bridge” concept failed preliminary tests and were not tested further. The concept aimed to extend the maximum allowable edge distance between ports by providing an intermediary flame port for crossover ignition.

Figure 21: Crossover Failure With Ignition “Bridge” Concept

For the remaining three plates, the clustering pattern was kept the same and the size of D_{ij} was varied from 0.20” to 0.325”. The number of outer (stabilizing) holes for all ports was kept constant for each plate, as was the ring thickness, $\delta_{r_{ij}\ell_{ij}}$ and the edge distance between ports. The design of each burner plate enables testing of linear, rhombic and circular patterns for all three D_{ijr}.

Crossover ignition tests proved successful for each plate. Testing of the three plates showed clustering pattern did not have measurable effect on crossover ignition for the range of power outputs tested, so long as the edge distance did not exceed the maximum allowable distance of 0.125” previously measured. Three geometries were tested for crossover ignition with the same burner plate: linear, rhombic, and circular. These geometries were constructed by taping select
ports shut on the same burner plate and appear white due to room light reflecting off the tape (Figure 22). The open ports, which fuel and air can exit appear black.

Figure 22: Light-Off Successful Regardless of Clustering Pattern or D_{ij}

![Figure 22: Light-Off Successful Regardless of Clustering Pattern or D_{ij}](image)

4.4.2 Turndown
Turndown for the three new plates is the same as for the burners tested previously (approximately 2:1). The limiting factor for turndown is still the performance of the venturi, with the clustering pattern having no measurable effect. The flexibility of the clustering pattern will allow for scaling and adapting the Ring-Stabilizer Burner to other residential and commercial appliances.
4.5 Scaling and Adapting to Other Gas Appliances

As the shape of the clustering patterns tested has little effect on crossover ignition, the clustering pattern should not be the limiting factor when scaling the technology to larger thermal outputs. The flexibility of the pattern is advantageous for adapting to different technologies. Therefore, the range of viable power output per port, dictated by flashback and lean blowoff, and the maximum physical size of the desired burner will be the driving constraints when adapting the multi-port ring-stabilizer to other technologies; this assumes a venturi system can be designed to entrain adequate air to create lean mixtures for any thermal output.

A simplified feasibility analysis examined adapting the ring-stabilizer to a residential gas water heater (with tank) followed by a vendor survey. Typical thermal output for a residential water heater is between 35 and 40 KBTU/hr. The burner head is typically 6 to 8 inches in diameter.

The research team established a range of viable thermal power outputs for each port size and the previously collected lean blowoff data. Flashback dictates the lower limit while lean blowoff decides the upper limit. The surface area (footprint) of each port is also calculated (Table 6).

<table>
<thead>
<tr>
<th>Power Per Port</th>
<th>Power Output and Footprint for One Ring-Stabilizer Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_in (in)</td>
</tr>
<tr>
<td>0.2</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>0.325</td>
<td>0.51</td>
</tr>
</tbody>
</table>

The new water heater burner must be capable of providing 40 KBTU/hr and fit in a footprint of \(\pi(8 \, \text{in})^2 / 4 \approx 50 \, \text{in}^2\). Using these design constraints, we can test the feasibility of our 3 port sizes.

For the port size of \(D_{in} = 0.25 \, \text{in}\) the power range for this port is 0.35 - 0.55 KBTU/hr per port. Therefore, the number of ports required for a 40 KBTU/hr water heater can range from 73 to 115 ports. The footprint is then calculated for all ports: 21.29 - 33.53 in². The replacement multi-port ring burner is capable of providing 40 KBTU /hr while fitting within the current water heater burner footprint. This calculation can be repeated for any port size that has adequate blowoff data. While the port size could be increased to minimize the number of ports, a larger number of ports will allow for better thermal distribution, preventing thermal stresses on the burner body that result from high heat in one concentrated location.

A similar analysis can be performed for any natural gas burner that operates in the upright position. Further testing is required to analyze the effect of burner operating orientation on emissions.
5.1 NO\textsubscript{x} Reduction Verification

NO\textsubscript{x} emissions of the newly developed natural-draft Ring-Stabilizer Burner were compared to conventional burners. Figure 23 shows corrected NO\textsubscript{x} emissions of two natural-draft ring-stabilized burners operating across a range of thermal output levels. These results show that the natural-draft reduced scale Ring-Stabilizer Burners are capable of producing low levels of NO\textsubscript{x} emissions over a wide range of equivalence ratios similar to their natural draft counterparts. NO\textsubscript{x} emissions are far below the 90 ppm level of incumbent technologies. The lowest operational NO\textsubscript{x} levels are 80% less than the typical cooktop burners, meeting one of the goals of this project.

![Figure 23: NO\textsubscript{x} Emissions From Natural-Draft Ring-Stabilizer Burner](image)

5.3.1 Discussion

The Ring-Stabilizer Burner is capable of operating with natural draft operation at target NO\textsubscript{x} emission levels. A stock fuel/air mixing venturi indicates a low cost commercial burner system using a stock fuel/air mixing venturi could be developed. However, the natural draft venturi delivers air at a nonlinear relationship to fuel flow. This nonlinearity poses difficulties for the natural draft Ring-Stabilizer Burner to operate with high degree of turndown while maintaining low emissions. A more detailed examination of the fuel/air venturi is required to maximize heat rate turndown while ensuring low emissions.
CHAPTER 6: Conclusions and Next Steps

5.1 Conclusions
Significant NOx emission reductions are achievable for residential and commercial cooking appliances. Adapting the forced-draft to natural-draft Ring-Stabilizer Burner was able to accomplish the objective of this project by reducing NOx emissions by 80% versus conventional technology.

5.2 Next Steps
While this result shows promise for the commercialization of low emissions, cooking appliances significant efforts are still required to bring this new technology to market. These efforts will include integrating the new burner technology into a form factor similar to commercial cooking appliances, including the gas delivery train (valve, and plumbing), cooktop cavity, spill tray, and cooking grate. A special focus must integrate an ignition system into the burner assembly and considering safety controls to eliminate flashback and flame lift off must be put in places.

Beyond engineering solutions necessary to integrate the burner technology, rational for customer acceptance of the new technology must be considered. While achieving low emissions and high thermal efficiency are necessary goals, only customer acceptance of the new technology in the competitive market will make such goals obtainable. Efforts must understand what market drivers will influence customers to adopt this technology as well as what equipment manufacturers are able and willing to build. These drivers may well not include the societal goals previously identified. Continued development of the new technology must be responsive to customer needs to maximize commercialization potential.

Additionally, the ring-stabilizer technology shows promise for alternative applications, including replacement for traditional ribbon burners and other industrial process heating systems. These applications should be evaluated through market studies prior to engineering developments are made to ensure research and development funds are properly leveraged.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Draft</td>
<td>The primary combustion air is provided by a fuel venturi (no electric fan needed).</td>
</tr>
<tr>
<td>Forced Draft</td>
<td>An electric fan or blower that provides the primary combustion air.</td>
</tr>
<tr>
<td>Lean Blowoff</td>
<td>Flame becomes unattached to port due to lean operation.</td>
</tr>
<tr>
<td>Flashback</td>
<td>The unwanted intrusion of flame behind the burner port resulting in uncontrolled burning within the premix chamber.</td>
</tr>
<tr>
<td>Turndown</td>
<td>The range of power output for the burner at each equivalence ratio.</td>
</tr>
<tr>
<td>Fuel Venturi</td>
<td>A short tube with a constricted throat causing a reduction in pressure that results in air entrainment for premixed burner operation.</td>
</tr>
</tbody>
</table>
REFERENCES

